Lecture 3: Dynamics of small open economies

Open economy macroeconomics, Fall 2006
Ida Wolden Bache

September 5, 2006

Dynamics of small open economies

- Required readings: OR chapter 2.1-2.3
- Supplementary reading: Obstfeld, M and K. Rogoff (1995): "The intertemporal approach to the current account" in Grossman and Rogoff (eds): Handbook of International Economics, vol 3 (or NBER Working Paper No. 4893, 1994).

An infinite-horizon small open economy model

- Production function

$$
Y_{s}=A_{s} F\left(K_{s}\right)
$$

- Capital accumulation (no depreciation)

$$
K_{s+1}=I_{s}+K_{s}
$$

- Intertemporally additive preferences

$$
U_{t}=\sum_{s=t}^{\infty} \beta^{s-t} u\left(C_{s}\right)=u\left(C_{t}\right)+\beta u\left(C_{t+1}\right)+\beta^{2} u\left(C_{t+2}\right)+\cdots
$$

- Deriving the intertemporal budget constraint:
- Period by period budget constraint

$$
\begin{align*}
C A_{t}= & B_{t+1}-B_{t}=Y_{t}+r B_{t}-C_{t}-I_{t}-G_{t} \\
& \text { or } \\
(1+r) B_{t}= & C_{t}+I_{t}+G_{t}-Y_{t}+B_{t+1} \tag{*}
\end{align*}
$$

- Forward by one period and divide by $1+r$

$$
B_{t+1}=\frac{C_{t+1}+I_{t+1}+G_{t+1}-Y_{t+1}}{1+r}+\frac{B_{t+2}}{1+r}
$$

and substitute back in equation (*)

$$
\begin{aligned}
(1+r) B_{t}= & C_{t}+I_{t}+G_{t}-Y_{t} \\
& +\frac{C_{t+1}+I_{t+1}+G_{t+1}-Y_{t+1}}{1+r}+\frac{B_{t+2}}{1+r}
\end{aligned}
$$

- Repeat process to eliminate B_{t+2}

$$
B_{t+2}=\frac{C_{t+2}+I_{t+2}+G_{t+2}-Y_{t+2}}{1+r}+\frac{B_{t+3}}{1+r}
$$

$$
\begin{aligned}
(1+r) B_{t}= & C_{t}+I_{t}+G_{t}-Y_{t} \\
& +\frac{C_{t+1}+I_{t+1}+G_{t+1}-Y_{t+1}}{1+r} \\
& +\frac{C_{t+2}+I_{t+2}+G_{t+2}-Y_{t+2}}{(1+r)^{2}} \\
& +\frac{B_{t+3}}{(1+r)^{2}}
\end{aligned}
$$

- Intertemporal budget constraint

$$
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(C_{s}+I_{s}\right)=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}\right)
$$

where we have imposed the transversality condition

$$
\lim _{T \rightarrow \infty}\left(\frac{1}{1+r}\right)^{T} B_{t+T+1}=0
$$

- Optimisation problem

$$
\max \sum_{s=t}^{\infty} \beta^{s-t} u\left((1+r) B_{s}-Y_{s}-I_{s}-G_{s}-B_{s+1}\right)
$$

- First-order condition with respect to B_{s+1}

$$
\begin{aligned}
-\beta^{s-t} u^{\prime}\left(C_{s}\right)+\beta^{s+1-t} u^{\prime}\left(C_{s+1}\right)(1+r) & =0 \\
u^{\prime}\left(C_{s}\right) & =\beta(1+r) u^{\prime}\left(C_{s+1}\right)
\end{aligned}
$$

- Note that only if $\beta=1 /(1+r)$ is a constant steady-state consumption path optimal
* If $\beta<1 /(1+r)$ consumption shrinks forever
* If $\beta>1 /(1+r)$ consumption grows forever
- How to get constant steady-state consumption with $\beta \neq 1 /(1+r)$?
* Make discount factor β a function of consumption $\left(\beta^{\prime}\left(C_{t}\right)<0\right)$
* Overlapping-generations (OLG) model
- Consumption functions: some special cases

1. $\beta=1 /(1+r) \Longrightarrow C_{t}=C_{t+1}=C_{t+2}=\cdots=C_{s}$

$$
\begin{aligned}
& \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} C_{t}=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right) \\
& \frac{1}{1-\frac{1}{1+r}} C_{t}=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right) \\
& C_{t}=\frac{r}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right)\right] \\
& C_{t}=\frac{r}{1+r} W_{t}
\end{aligned}
$$

i.e.; optimal consumption C_{t} equals the annuity value of total discounted wealth net of government spending and investment
2. Isoelastic utility $u(C)=\frac{C^{1-\frac{1}{\sigma}}}{1-\frac{1}{\sigma}}$

- Euler equation

$$
\begin{aligned}
& u^{\prime}(C)=C^{-\frac{1}{\sigma}} \\
C_{t}^{-\frac{1}{\sigma}}= & \beta(1+r) C_{t+1}^{-\frac{1}{\sigma}} \\
C_{t+1}= & \beta^{\sigma}(1+r)^{\sigma} C_{t} \\
C_{t+2}= & \beta^{\sigma}(1+r)^{\sigma} C_{t+1} \\
= & \left(\beta^{\sigma}(1+r)^{\sigma}\right)^{2} C_{t} \\
& \cdots \\
C_{s}= & \left(\beta^{\sigma}(1+r)^{\sigma}\right)^{s-t} C_{t}
\end{aligned}
$$

- Insert into intertemporal budget constraint

$$
\begin{aligned}
& \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} C_{s}=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right) \\
& \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(\beta^{\sigma}(1+r)^{\sigma}\right)^{s-t} C_{t}= \\
& (1+r) B_{t} \\
& \\
& \quad+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right) \\
& C_{t} \sum_{s=t}^{\infty}\left(\beta^{\sigma}(1+r)^{\sigma-1}\right)^{s-t}=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right) \\
& C_{t}=\frac{(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right)}{\sum_{s=t}^{\infty}\left(\beta^{\sigma}(1+r)^{\sigma-1}\right)^{s-t}}
\end{aligned}
$$

- Noting that if $\beta^{\sigma}(1+r)^{\sigma-1}<1$

$$
\begin{aligned}
\sum_{s=t}^{\infty}\left(\beta^{\sigma}(1+r)^{\sigma-1}\right)^{s-t} & =\frac{1}{1-\beta^{\sigma}(1+r)^{\sigma-1}} \\
& =\frac{1+r}{r+\underbrace{1-\beta^{\sigma}(1+r)^{\sigma}}_{\vartheta}}
\end{aligned}
$$

then

$$
C_{t}=\frac{r+\vartheta}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right)\right]
$$

- A fundamental current account equation
- The permanent level of a variable X_{t} is the hypothetical constant level of the variable that has the same present value as the variable itself

$$
\begin{aligned}
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \widetilde{X}_{t} & =\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} X_{s} \\
\widetilde{X}_{t} & \equiv \frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} X_{s}
\end{aligned}
$$

- Assume $\beta=\frac{1}{1+r}$

$$
\begin{aligned}
C A_{t}= & B_{t+1}-B_{t} \\
= & Y_{t}+r B_{t}-C_{t}-G_{t}-I_{t} \\
= & Y_{t}+r B_{t}-G_{t}-I_{t} \\
& -\underbrace{\frac{r}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right)\right]}_{C_{t}} \\
= & Y_{t}+r B_{t}-r B_{t}-G_{t}-I_{t}-\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} Y_{s} \\
& +\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} G_{s}+\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} I_{s} \\
= & \left(Y_{t}-\widetilde{Y}_{t}\right)^{\infty}-\left(G_{t}-\widetilde{G}_{t}\right)-\left(I_{t}-\widetilde{I}_{t}\right)
\end{aligned}
$$

- Economy runs a current account deficit (surplus) if output is below (above) its permanent level, government spending is above (below) its permanent level or investment is above (below) its permanent level
- What if $\beta \neq \frac{1}{1+r}$?
- Assume isoelastic preferences

$$
\begin{aligned}
C A_{t}= & Y_{t}+r B_{t}-C_{t}-G_{t}-I_{t} \\
= & Y_{t}+r B_{t}-G_{t}-I_{t} \\
& -\frac{r+\vartheta}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right)\right] \\
= & Y_{t}+r B_{t}-G_{t}-I_{t} \\
& -\frac{r}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right)\right] \\
& -\frac{\vartheta}{1+r} \underbrace{\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}-I_{s}\right)\right]} \\
\text { where } \vartheta= & 1-\beta^{\sigma}(1+r)^{\sigma}
\end{aligned}
$$

- Current account driven by two distinct motives: pure smoothing motive (as in the case $\beta=\frac{1}{1+r}$) and a tilting motive
* If $\vartheta<0$ (country is relatively patient, $\beta>1 /(1+r)$), current account balance is increased
* If $\vartheta>0$ (country is relatively impatient, $\beta<1 /(1+r)$), current account balance is reduced
- An aside: debt sustainability or when is a country bankrupt?
- Rearrange the intertemporal budget constraint

$$
\begin{aligned}
-(1+r) B_{t} & =\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-C_{s}-G_{s}-I_{s}\right) \\
& =\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} T B_{s}
\end{aligned}
$$

where $T B_{s}$ is the trade balance

- Suppose that the economy grows at rate g

$$
\frac{Y_{s+1}}{Y_{s}}=1+g, \quad g>0
$$

and that

$$
\frac{B_{s+1}}{B_{s}}=1+g
$$

so that the debt-to-output ratio $\left(B_{s} / Y_{s}\right)$ is constant

- The current account balance is

$$
C A_{s}=B_{s+1}-B_{s}=g B_{s}=r B_{s}+T B_{s}
$$

which implies

$$
\frac{T B_{s}}{Y_{s}}=\frac{-(r-g) B_{s}}{Y_{s}}
$$

that is; to maintain a constant debt-to-GDP ratio the country needs to pay only the difference between the real interest rate and the growth rate of the economy

A stochastic current account model

- Future levels of output, investment and government spending are stochastic
- Only asset is riskless bond which pays a constant real interest rate r
- Replace assumption of perfect foresight with assumption of rational expectations (Muth, 1961): agents' expectations are equal to the mathematical conditional expectation based on the economic model and all available information about current economic variables
- Let \digamma_{t} denote the information available to the agent at time t and let X_{t+1}^{e} be the agent's subjective expectation of a variable X_{t+1} made at time t
- Muth's rational expectations hypothesis (REH) then implies

$$
X_{t+1}^{e}=E\left[X_{t+1} \mid \digamma_{t}\right]
$$

- Define the rational expectations forecast error

$$
\epsilon_{t+1}=X_{t+1}-E\left[X_{t+1} \mid \digamma_{t}\right]
$$

- According to the REH then

$$
E\left[\epsilon_{t+1} \mid \digamma_{t}\right]=0
$$

- Note: ϵ_{t+1} has zero expected value and is uncorrelated with any information available to the agents at time t
- In the absence of uncertainty REH corresponds to the perfect foresight assumption.
- Representative consumer maximises expected value of lifetime utility

$$
U_{t}=E_{t}\left[\sum_{s=t}^{\infty} \beta^{s-t} u\left(C_{s}\right)\right]
$$

- Intertemporal budget constraint with transversality condition imposed

$$
\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(C_{s}+I_{s}\right)=(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-G_{s}\right)
$$

- Optimisation problem

$$
\max E_{t}\left[\sum_{s=t}^{\infty} \beta^{s-t} u\left((1+r) B_{s}-Y_{s}-I_{s}-G_{s}+B_{s+1}\right)\right]
$$

- First-order condition with respect to B_{s+1}

$$
E_{t}\left[u^{\prime}\left(C_{s}\right)\right]=\beta(1+r) E_{t}\left[u^{\prime}\left(C_{s+1}\right]\right)
$$

for $s=t$

$$
u^{\prime}\left(C_{t}\right)=\beta(1+r) E_{t}\left[u^{\prime}\left(C_{s+1}\right)\right]
$$

- The linear-quadratic permanent income model
- Assume that the period utility function is

$$
u(C)=C-\frac{a_{0}}{2} C^{2}, \quad a_{0}>0
$$

- Implies that marginal utility is linear

$$
u^{\prime}(C)=1-a_{0} C
$$

- Stochastic Euler equation assuming $\beta=1 /(1+r)$

$$
\begin{aligned}
1-a_{0} C_{t} & =1-a_{0} E_{t}\left[C_{t+1}\right] \\
C_{t} & =E_{t}\left[C_{t+1}\right]
\end{aligned}
$$

- REH implies

$$
C_{t+1}=E_{t}\left[C_{t+1}\right]+\varepsilon_{t+1}
$$

and thus

$$
C_{t+1}=C_{t}+\varepsilon_{t+1}
$$

that is; consumption follows a random walk (Hall, 1978)

- Consumption function

$$
E_{t}\left[\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} C_{s}\right]=E_{t}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(Y_{s}-I_{s}-G_{s}\right)\right]
$$

- From the Euler equation: $E_{t} C_{s}=C_{t}$

$$
C_{t}=\frac{r}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} E_{t}\left(Y_{s}-I_{s}-G_{s}\right)\right]
$$

- Certainty equivalence: people make decisions under uncertainty as if the future stochastic variables were sure to turn out equal to their conditional expectations (that is; uncertainty about future income has no impact on current consumption).
- The linear quadratic model and the current account
- Consider an endowment economy without government spending
- Output follows a first-order autoregressive (AR) process*

$$
Y_{t}-\bar{Y}=\rho\left(Y_{t-1}-\bar{Y}\right)+\varepsilon_{t}
$$

where $0 \leq \rho \leq 1$ is a measure of the persistence of the process and $E\left[\varepsilon_{t}\right]=0$ and $E\left[\varepsilon_{t} \varepsilon_{s}\right]=0$ for $s \neq t$.

- Impulse response function (or dynamic multiplier)

$$
\frac{\partial Y_{s}}{\partial \varepsilon_{t}}=\rho^{s-t}
$$

- When $\rho=0$, a shock has purely transitory effects on Y_{t}
- When $\rho=1$, a shock has permanent effect on Y_{t} (unit root process)
*See Hamilton (1994): Time Series Analysis, chapter 1 for details.
- By the law of iterated conditional expectations (the current expectation of a future expectation of a variable equals the current expectation of the variable, e.g., $\left.E_{t}\left[E_{t+1}\left[\varepsilon_{t+2}\right]\right]=E_{t}\left[\varepsilon_{t+2}\right]\right)$

$$
E_{t}\left[Y_{s}-\bar{Y}\right]=\rho^{s-t}\left(Y_{t}-\bar{Y}\right)
$$

Impulse response functions for first-order AR process for different values of ρ

- Insert into consumption function

$$
\begin{aligned}
C_{t}= & \frac{r}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} E_{t} Y_{s}\right] \\
= & \frac{r}{1+r}\left[(1+r) B_{t}+\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t}\left(\rho^{s-t}\left(Y_{t}-\bar{Y}\right)+\bar{Y}\right)\right] \\
= & r B_{t}+\frac{r}{1+r} \sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \bar{Y} \\
& +\frac{r}{1+r}\left[\sum_{s=t}^{\infty}\left(\frac{1}{1+r}\right)^{s-t} \rho^{s-t}\left(Y_{t}-\bar{Y}\right)\right] \\
= & r B_{t}+\bar{Y}+\frac{r}{1+r}\left[\sum_{s=t}^{\infty}\left(\frac{\rho}{1+r}\right)^{s-t}\right]\left(Y_{t}-\bar{Y}\right) \\
= & r B_{t}+\bar{Y}+\frac{r}{1+r}\left[\frac{1}{1-\frac{\rho}{1+r}}\right]\left(Y_{t}-\bar{Y}\right) \\
= & r B_{t}+\bar{Y}+\frac{r}{1+r-\rho}\left(Y_{t}-\bar{Y}\right)
\end{aligned}
$$

- For $\rho<1$ a one unit increase in output increases consumption by less than one unit ('Keynesian' consumption function).
- Substitute in for $Y_{t}-\bar{Y}=\rho\left(Y_{t-1}-\bar{Y}\right)+\varepsilon_{t}$

$$
\begin{aligned}
C_{t} & =r B_{t}+\bar{Y}+\frac{r}{1+r-\rho}\left(\rho\left(Y_{t-1}-\bar{Y}\right)+\varepsilon_{t}\right) \\
& =r B_{t}+\bar{Y}+\frac{r \rho}{1+r-\rho}\left(Y_{t-1}-\bar{Y}\right)+\frac{r}{1+r-\rho} \varepsilon_{t}
\end{aligned}
$$

- Implications for the current account

$$
\begin{aligned}
C A_{t} & =r B_{t}+Y_{t}-C_{t} \\
& =r B_{t}+Y_{t}-\left(r B_{t}+\bar{Y}+\frac{r}{1+r-\rho}\left(Y_{t}-\bar{Y}\right)\right) \\
& =\frac{1-\rho}{1+r-\rho}\left(Y_{t}-\bar{Y}\right)
\end{aligned}
$$

- Substitute in for $Y_{t}-\bar{Y}=\rho\left(Y_{t-1}-\bar{Y}\right)+\varepsilon_{t}$

$$
\begin{aligned}
C A_{t} & =\frac{1-\rho}{1+r-\rho}\left(\rho\left(Y_{t-1}-\bar{Y}\right)+\varepsilon_{t}\right) \\
& =\rho \frac{1-\rho}{1+r-\rho}\left(Y_{t-1}-\bar{Y}\right)+\frac{1-\rho}{1+r-\rho} \varepsilon_{t}
\end{aligned}
$$

- An unexpected shock to output $\left(\varepsilon_{t}>0\right)$ causes a rise in the current account surplus as long as the shock is temporary $(\rho<0)$
- Graphs show the impulse responses of Y_{t}, C_{t} and $C A_{t}$ to a one unit shock to output in the linear quadratic model for different values of ρ when $B_{1}=$ $0, Y_{0}=\bar{Y}=0, \beta=0.99, r=(1-\beta) / \beta$.

Impulse responses to one unit shock to output. $\rho=0.9$.

Impulse responses to one unit output shock. $\rho=0$.

Impulse responses to one unit output shock. $\rho=1$.


```
clear all;
%Set parameters
P = 40; %Impulse response horizons
beta = 0.99; %Discount factor
r = (1-beta)/beta; %Exogenous real interest rate
YMEAN = 0; % Mean output level
rho = 0.9; % Persistence of output process
B(1) = 0; % Initial level of debt
%Shock process (one unit shock in period 1)
e = zeros(1,P);
e(1)=1;
%Output process (assuming Y(0)=YMEAN)
Y(1) = YMEAN+e(1);
for s = 2:P;
Y(s)=rho*(Y(s-1)-YMEAN )+YMEAN+e(s);
end
```

\%Solution for consumption, net foreign assets and current account balance
for $s=1: P$;
$C(s)=r * B(s)+Y M E A N+(r /(1+r-r h o)) *(Y(s)-Y M E A N) ;$ \%Consumption function
$B(s+1)=(1+r) * B(s)+Y(s)-C(s) ; \%$ Period s budGAt constraint
$C A(s)=B(s+1)-B(s) ; \%$ Definition of current account balance
end

- Does a positive output innovation always imply a current account surplus? NO!
- Assume that output growth is positively serially correlated

$$
Y_{t}-Y_{t-1}=\rho\left(Y_{t-1}-Y_{t-2}\right)+\varepsilon_{t}
$$

- Impulse responses

$$
\frac{\partial Y_{t}}{\partial \varepsilon_{t}}=1, \frac{\partial Y_{t+1}}{\partial \varepsilon_{t}}=1+\rho, \frac{\partial Y_{t+2}}{\partial \varepsilon_{t}}=1+\rho+\rho^{2}, \ldots, \lim _{s \rightarrow \infty} \frac{\partial Y_{s}}{\partial \varepsilon_{t}}=\frac{1}{1-\rho}
$$

- Implication: Future output rises more than $\varepsilon_{t} \rightarrow$ permanent output fluctuates more than current output \rightarrow unexpected increase in output leads to a larger increase in consumption and a current account deficit
- Deaton's paradox: In the data, output growth is positively serially correlated, yet consumption does not respond more than proportionally to output changes.
- Homework on Deaton's paradox: Exercise 4 in OR ch. 2 (answers will be provided next week)

